

Natural Source Zone Depletion

Environmental Show of the South

Natural Source Zone Depletion

 LNAPL NSZD occurs when a variety of processes act to physically redistribute LNAPL constituents to the aqueous or gaseous phase and subsequently break them down

Key Aspects of NSZD

- Rates are a bulk measure
- Direct biodegradation
 - Oil-contact microbiology
 - Observing significant losses of longer chain compounds
- Biogases are directly outgassed
 - >80% of the observed carbon efflux may be attributed to this at Bemidji (Minnesota)
- NSZD rates might be zero-order (constant)

Terminal Electron Acceptors

ITRC LNAPL-3 NSZD Appendix Figure NSZD-2. Electron acceptor ladder

EFFLUX

Various processes occurring over space and time

Thermodynamically-driven sequence, first-order biodegradation

Collective effect appears to be a zero order rate

Garg et al., 2017

Conceptual Model

<u>Note</u>: This is a conceptual depiction of a typical setting and thereby idealizes conditions. No indication of process magnitude is implied by font or arrow size.

Figure 1-1. Conceptualization of Vapor Phase-Related NSZD Processes at a Petroleum Release Site

NSZD Guidance, American Petroleum Institute

Method for Measurment

- Gradient Method The gas flux is calculated which can then be stoichiometrically converted to equivalent LNAPL mass loss rates.
- Dynamic Closed Chamber (DCC) method uses field instrumentation to generate a real-time, short-term direct measurement of soil gas efflux of CO₂
- Passive CO₂ Flux Trap method uses a chemical "trap" that captures CO₂ emanating from the soil.
- Biogenic heat methods are based on the principle that hydrocarbon biodegradation is an exothermic process that produces energy.

Gradient Method

NSZD Guidance, American Petroleum Institute

Dynamic Closed Chamber Method

Figure 4. LI-COR 8100A DCC Apparatus and Setup

API, 2017

Passive Flux Trap Method

The trap has three components: trap body, receiver pipe, and rain cover

Traps are set onto a pre-set 'receiver' pipe (4-inch diameter Sch40 PVC), installed several days in advance; deployment lasts ~ 2 weeks

 CO_2 efflux is captured on a sorbent material inside the trap (there is a bottom sorbent layer to collect CO_2 efflux and an upper sorbent material to collect atmospheric CO_2 due to barometric changes)

Figure 5-1. Schematic (Left) and Photo (Right) of a Passive CO₂ Flux Trap

NSZD Guidance, American Petroleum Institute

Biogenic heat method

Vertical Profile of Background-Corrected Temperature

Background Corrections

- Flux Trap and DCC (¹⁴C) correction to differentiate CO₂ associated with modern (i.e., natural) and fossil (i.e., petroleum NSZD) carbon or a background correction
- Biogenic heat A background correction is required in order to account for natural temperature changes in the subsurface.

Seasonal Variability

- Continental climate strong temperature changes
- Corresponds to seasonal variations in contaminant respiration (NSZD)
- CO₂ concentrations begin increasing where oil is present and expand downward from late summer through the fall
- ...indicate an interaction between a seasonally variable process, such as fluctuations in soil temperature, and the presence of oil

Fig. 11. Field data supporting the conceptual model of vadose zone processes at the Bemidji site: (A) total (TSR) and natural soil respiration (NSR) by the site-average method, (B) daily mean volumetric water content near Well 9015G, (C) vadose zone CO_2 concentrations at Well 9015G, and (D) daily mean vadose zone temperatures near Well 9015G.

Sihota et al., 2016

NSZD at my Site?

- Some Criteria to be Considered
 - Remaining LNAPL and dissolved-phase are not a significant risk to human health or the environment (present or future)
 - NSZD of the LNAPL body and natural attenuation of dissolvedphase plume are documented as occurring and will further mitigate risk from the release
 - Areal extent of plume is shown to be stable or decreasing

Using NSZD for Decision Making

- LNAPL body stability evaluation
- Practicability determination of LNAPL recovery
- Endpoint metric for active LNAPL remediation

 Benchmark for enhanced-NSZD remedy design

Where is NSZD Heading

Research on "non-standard sites"

- Fractured media
- Shallow
- Capped
- Surface water- groundwater interfaces
 AND....
- Risk associated with intermediates?
- What does the end look like?
- When will we get there?

NSZD - Summary

- NSZD results in mass losses at petroleum hydrocarbon impacted sites
- NSZD mass removal can rival that obtained from engineered remediation, in some cases
- Understanding NSZD rates can help to constrain active remediation endpoints
- Documenting the occurrence and rate of NSZD mass losses is important for understanding it's use as a management alternative

